三角形的三边关系
武进区卢家巷实验学校 平金华
教学目标:
1、通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
2、引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
3、培养学生积极的学习态度和乐于探究的数学情感。
教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。
教学难点:运用三角形三边的关系解决实际问题。
课前准备:不同长度的小棒、作业单。
教学过程:
一、激趣导入,揭示课题。
1、师:同学们猜一猜,今天老师把谁请进我们的课堂了?(利用希沃白板的聚光灯功能)
师:小棒能帮助我们研究哪些数学问题呢?
生:线段、三角形、长方形、正方形、五边形……
2、师:今天我们继续研究三角形。关于三角形你已经了解了哪些知识?
生:三角形有3条边、3个角、3个顶点、3条高……
3、揭示新课。
今天我们就借助小棒,继续研究三角形。(板书课题)
二、合作探究,发现关系
1、发现问题
课件出示例题3:任意长度的三根小棒,都能首尾相接围成一个三角形吗?
2、实验探究。
活动要求:
选一选:任意选3根小棒,将小棒长度记录在表格中。
围一围:3根小棒首尾相接围一围,把围成的结果记录在表格中。
说一说:同桌互相说一说与你的猜想一致吗?
教师巡视,了解学生的操作情况。
同桌交流。
全班交流,个别展示:你选择的是哪三根小棒,是否能围成一个三角形?
学生回答预设:
①选择8cm、5cm、4cm三根小棒,能围成三角形。
②选择5cm、4cm、2cm三根小棒,能围成三角形。
③选择8cm、4cm、2cm三根小棒,不能围成三角形。
④选择8cm、5cm、2cm三根小棒,不能围成三角形。
追问:第③种情况和第④种情况为什么不能围成三角形?
引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。
教师小结:因为4cm+2cm<8cm,5cm+2cm<8cm,所以不能围成三角形。
3、探索规律。
师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?
(1)布置探索任务。
从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?
(2)学生独立探索。
(3)交流汇报。
第①种情况:4+5>8、4+8>5、5+8>4;
第②种情况:4+2>5、4+5>2、5+2>4。
小结:任意两根小棒长度的和一定大于第三根小棒。
4.验证规律。
提问:三角形任意两边长度的和一定大于第三边吗?
(1)画一画:用三角尺画一个三角形。
(2)量一量:量出三角形的各边长度。(单位:毫米)
(3)算一算:算出任意两边之和与第三边长度的关系。
(4)总结规律。
提问:通过验证,你发现三角形三边的长度有哪些关系?
师生共同总结得出:三角形任意两边长度的和大于第三边。
追问:对于“任意两边”这四个字,你是怎么理解的?
5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?
引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。
三、反馈完善
1.完成 “练一练”第1题。
先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。
2.完成 “练一练”第2题。
这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差<第三边<两边之和”。
四、反思总结
提问:这节课我们学习了什么内容?有什么收获和体会?